# Hyperparameters
training_epochs = 100 # Total number of training epochs
learning_rate = 0.001 # The learning rate
# create a model
def create_model():
model = tf.keras.Sequential()
# Input layer
model.add(tf.keras.layers.Dense(8, input_dim=2, kernel_initializer='uniform', activation='relu'))
# Output layer
model.add(tf.keras.layers.Dense(y_train.T.shape[1], activation='sigmoid'))
# Compile a model
model.compile(loss='binary_crossentropy',
optimizer=tf.keras.optimizers.Adam(learning_rate),
metrics=['accuracy'])
return model
model = create_model()
model.summary()
Let's trains the model for a given number of epochs.
results = model.fit(
X_train, y_train.T,
epochs= training_epochs,
validation_data = (X_test, y_test.T),
verbose = 0
)